Radiation and optical properties of Nannochloropsis oculata grown under different irradiances and spectra.

نویسندگان

  • Razmig Kandilian
  • Euntaek Lee
  • Laurent Pilon
چکیده

This paper reports accurate measurements of the radiation characteristics and optical properties of Nannochloropsis oculata in the photosynthetically active radiation (PAR) region. These marine microalgae were grown in 2 cm thick culture bottles with vented caps exposed, on one side, to either white fluorescent light bulbs or red LEDs emitting at 630 nm. The illuminance varied from 2000 to 10,000 lux. The microalgae average equivalent diameter ranged from 2.52 to 2.63 μm. Their radiation characteristics and optical properties were statistically identical over most of the PAR region. Other N. oculata grown with 2 vol.% CO2 injection in 1cm thick flat bottles exposed to light from both sides reached a significantly larger mass concentration and featured lower pigment concentration and smaller absorption cross-sections. This was due to nutrient limited growth conditions. The refraction index was independent of illuminance, spectrum, and growth conditions and featured resonance at wavelengths corresponding to absorption peaks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation on optical properties in the surface of KClxBr1-x mixed crystals irradiated to gamma radiation (A new approach)

Background: Similar to the thermoluminescence (TL) spectra, the optical parameters variations can also be used in TL crystals for dosimetry purposes. These optical parameters can include absorption, transmission and reflection coefficients. Materials and Methods: Single crystals of KBr and KCl which have been used in this research were grown from laboratory grade extra pure precursor p...

متن کامل

Time-dependent radiation characteristics of Nannochloropsis oculata during batch culture

This paper reports the temporal evolution of the scattering and absorbing cross-sections of marine eustigmatophycease Nannochloropsis oculata grown in a flat-plate photobioreactor (PBR). The PBR was operated in batch mode under constant irradiance of 7500 or 10,000 lux provided by red LEDs emitting at 630 nm. The radiation characteristics between 400 and 750 nm and pigment concentrations of N. ...

متن کامل

Growth and lipid accumulation in response to different cultivation temperatures in Nannochloropsis oculata for biodiesel production

Background: Microalgal lipid is a promising feedstock for biodiesel production. The aim of the present study was to investigate the effects of cultivation temperature on the growth and lipid accumulation properties of Nannochloropsis oculata microalgae. Methods: Nannochloropsis oculatacan grow in a wide range of temperatures (5 ~ 35°C). Late in the stationary growth phase of microalgae, bi...

متن کامل

Photosynthetic acclimation of Nannochloropsis oculata investigated by multi-wavelength chlorophyll fluorescence analysis.

Multi-wavelength chlorophyll fluorescence analysis was utilised to examine the photosynthetic efficiency of the biofuel-producing alga Nannochloropsis oculata, grown under two light regimes; low (LL) and high (HL) irradiance levels. Wavelength dependency was evident in the functional absorption cross-section of Photosystem II (σII(λ)), absolute electron transfer rates (ETR(II)), and non-photoch...

متن کامل

Toxicity Effect of Colloidal Silver Nanoparticles to Marine Microalgae, Nannochloropsis oculata

To assess the acute toxicity of colloidal silver nanoparticles (AgNPs) in Nannochloropsis oculata, microalgal cells were exposed to different concentrations of AgNPs for 72 hours and according to OECD 201. Algal cell count was done every 24 hours and average specific growth rate, as well as percent inhibition of the average specific growth rate, were calculated for each concentration. Also, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 137  شماره 

صفحات  -

تاریخ انتشار 2013